
PHYSICAL REVIEW B 94, 195132 (2016)

Evolution of localized states in Lieb lattices under time-dependent magnetic fields
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We study the slow time evolution of localized states of the open-boundary Lieb lattice when a magnetic flux
is applied perpendicularly to the lattice and increased linearly in time. In this system, Dirac cones periodically
disappear, reappear, and touch the flat band as the flux increases. We show that the slow time evolution of a
localized state in this system is analogous to that of a zero-energy state in a three-level system whose energy levels
intersect periodically and that this evolution can be mapped into a classical precession motion with a precession
axis that rotates as times evolves. Beginning with a localized state of the Lieb lattice, as the magnetic flux is
increased linearly and slowly, the evolving state precesses around a state with a small itinerant component and the
amplitude of its localized component oscillates around a constant value (below but close to 1), except at multiples
of the flux quantum where it may vary sharply. This behavior reflects the existence of an electric field (generated
by the time-dependent magnetic field) which breaks the C4 symmetry of the constant flux Hamiltonian.
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I. INTRODUCTION

In flat-band systems, there is a high energy degeneracy
associated with the existence of localized states (i.e., electrons
trapped in a small region of a lattice due to destructive wave
function interference). Recent interest in this area has arisen
[1,2] due to experimental realizations of flat-band systems
using arrays of optical waveguides [3,4], exciton-polarization
condensates [5,6], and cold atoms in optical lattices [7]. Known
lattices with flat bands include the Lieb [8], Mielke [9], and
Tasaki [10] lattices and there are methods of generating lattices
of nearly arbitrary geometry which have these localized states
when the hopping constants obey certain relations [11,12].

These systems can be separated in two classes in what
concerns the behavior of their flat band in the presence of an
external magnetic field. In particular, the Mielke and Tasaki
lattices do not display flat bands for finite magnetic flux. In
contrast, lattices of the Lieb’s class are flat-band robust in
that they retain a flat band when a magnetic field is applied
perpendicularly to the lattice. However, the introduction of
magnetic flux requires that localized states occupy at least two
plaquettes [13] and therefore, the flat-band subspace as a whole
evolves in the Hilbert space as the magnetic field is increased.
In the case of the Lieb tight-binding (TB) model, the band
structure has a Dirac point at k = (π,π ). This model under
an evolving magnetic field creates an interesting theoretical
scenario: (i) a flat band and Dirac bands that touch at the Dirac
point when the magnetic flux per plaquette is a multiple of
the flux quantum; and (ii) a perturbation such that the flat
band persists, and the Dirac cones disappear and reappear
periodically as the perturbation varies.

In this paper we study the slow time evolution of localized
states in the scenario described above. As stated by the
adiabatic theorem [14], if the evolution of the perturbation
(magnetic field) is slow enough, the evolving state, initially
an eigenstate, is expected to closely remain an instantaneous
eigenstate of the Hamiltonian at any time, as long as there is
an energy difference between that eigenstate and the rest of
the eigenstates. Since energy levels periodically cross the flat
band, this time evolution will periodically leave the adiabatic
regime close to the crossing instants.

One of the questions we wish to answer is: near the energy
crossing instants, can we picture the flat-band system as a
three-level system with one zero-energy (flat-band) state and
two finite-energy ones? The motivation for this question is
twofold. First, if one considers a finite-size tight-binding
lattice, the Dirac cones are replaced by discrete levels and,
as the perturbation is increased, two of these levels cross the
flat-band level. Second, the application of the perturbation
to the flat-band tight-binding system introduces Hamiltonian
terms that couple each dispersive state with flat-band states.
However, as the flat band is degenerate, one can rotate the basis
of the flat-band subspace in a way such that the perturbation
couples the dispersive state with only one localized state (in
analogy with what was done in Ref. [15]). We find that if
the magnetic flux is applied linearly and slowly, the localized
component of the evolving state oscillates around a constant
value, except at energy crossing instants where it varies
sharply. This reflects an intricate precession behavior of the
evolving state around a state with a small itinerant component.
Such a behavior is also found in the case of a three-level system
whose energy levels intersect periodically. This precession
behavior reflects the existence of an electric field in the Lieb
lattice (generated by the time-dependent magnetic field) which
breaks the C4 symmetry of the constant flux Hamiltonian.

The paper is organized in the following way. First, we
consider the tight-binding Hamiltonian of the Lieb lattice in the
presence of magnetic flux (also called t-φ model). When the
magnetic flux per plaquette is a multiple of the flux quantum,
the zero-energy subspace has two extra states, which we label
|ε±〉 states. We then analyze the time evolution of one of the
localized eigenstates, starting at a certain initial magnetic flux
and then varying the magnetic flux linearly and slowly. Second,
we study a toy three-level system with a time-dependent
Hamiltonian consisting of one zero-energy eigenstate and
two finite-energy ones, whose energy periodically crosses the
zero-energy line. We study the slow time evolution of the
zero-energy state and find that it is equivalent to a classical
precession motion, but with a nutationlike oscillation of the
zero-energy component due to the rotation of the Hamiltonian
eigenbasis. This precession motion may lead to huge long-time
modifications of the state if, when the level crossings occur,
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FIG. 1. (a) Localized state in two contiguous plaquettes of the Lieb lattice with one common site, for the symmetric gauge A = B

2 (−y,x,0).
Labeled circles represent finite wave function amplitudes, and the remaining sites are nodes of the wave function. (b) Energy spectrum of the
Hamiltonian H (see text) as a function of the magnetic flux through a plaquette φ for the finite Lieb lattice with 4 × 4 plaquettes. (c) Closeup
of an intersection point between the flat band and two dispersive states, which we call the two ε states. (d) Square of the absolute value of
the projection of an evolving state |ψ(t)〉 onto the localized subspace of the eigenvectors of H , as a function of φ. The lattice comprises four
plaquettes (two in each direction x or y). The initial state is of the form of (a), with φ = π . The time evolution is due to the linear change of
the magnetic flux φ(t) = ωt , ω = 2π × 10−5, and (x0,y0) = (−4, − 4).

the precession axis rotates with finite angular velocity. Third,
we show that analogous precession behavior is found in the
evolution of any localized state of the Lieb lattice under
time-dependent magnetic flux. In this case, since it is this
time dependence that leads to the rotation of the precession
axis, we can also say it is a consequence of the electric field
generated by the evolving vector potential.

II. LIEB LATTICE UNDER MAGNETIC FLUX

Let us consider the Lieb tight-binding model without
magnetic flux. The Lieb lattice can be obtained from a
traditional two-dimensional (2D) square lattice by removing
one quarter of its atoms in a regular pattern [see Fig. 1(a)].
It is comprised of three sublattices (A, B, and C). The
eigenvalues of the nearest-neighbor TB model of this lattice
(with unitary hopping constant) consist of three energy bands,
one of which is flat, with zero energy [3,16]. The energy of the

dispersive bands has the form ε±(k) = ±2
√

cos2 kx

2 + cos2 ky

2 ,
where (for periodic boundary conditions) kα = 2πnα/Lα , with
nα = 1, . . . ,Lα , and Lα is the number of unit cells in the α

direction. The total number of unit cells is N = LxLy . The flat
band is a high-degeneracy eigenspace composed of localized
states (these states remain eigenstates when the system size
is increased, implying that the respective probability density
distribution is localized in a region of the lattice).

On an infinite Lieb lattice, the dispersive bands have Dirac
cones that touch the flat band at the point k = (π,π ). On a
finite periodic Lieb lattice, this point is only allowed if both
Lx and Ly are even. When this is the case, the degeneracy of
the zero-energy subspace is N + 2. The number of localized
states (degeneracy of the flat band) is N + 1. The remaining
zero-energy state is the eigenstate of the dispersive bands that
is located at the Dirac point. A localized state is also located

at the Dirac point, effectively creating a two-state subspace
that is degenerate for both energy and k [17]. In contrast, on
a Lieb lattice with open boundary conditions, the flat band
is N -fold degenerate in the absence of magnetic flux. Note
that localized states span only over B- and C-type atoms of
the lattice, but the zero-energy dispersive state (corresponding
to the Dirac point) only spans A-type atoms. This state has
finite amplitude at A-type atoms at the edges of the lattice, and
consequently it is no longer an eigenstate if more plaquettes
are added. The lower and upper dispersive bands involve all
three sublattices A, B, and C. An important characteristic of
the Lieb TB model is that in the presence of magnetic flux
the flat band remains flat, albeit with degeneracy N − 1, that
is, even in the presence of magnetic flux, one has localized
eigenstates of the TB Hamiltonian induced by the wave func-
tion destructive interference associated with the particular Lieb
geometry [18].

To include a magnetic field in the model, we must consider
the Peierls phase gained by the electron when it hops between
lattice sites θij = 2π

φ0

∫ j

i
A · dl, where i and j label the (x,y)

coordinates of the initial and final sites, respectively, A is the
vector potential, and φ0 = h/e is the magnetic flux quantum.
Assuming the symmetric gauge A = B

2 [−(y − y0),x − x0,0],
where B is the magnitude of the magnetic field and (x0,y0)
is the center of the vector potential relative to the center of
the lattice (0,0), the Lieb TB Hamiltonian in the presence of
magnetic flux is obtained by applying the Peierls substitution
to the standard TB Hamiltonian, and is given by [19]

H = −
∑

all A sites

(
e−iφ

(x−x0)
8 B

†
x,y+1 + eiφ

(x−x0)
8 B

†
x,y−1

+ eiφ
(y−y0)

8 C
†
x+1,y + e−iφ

(y−y0)
8 C

†
x−1,y

)
Ax,y + H.c.,

(1)
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where φ = 4Bπ/φ0 is the normalized magnetic flux. Open
boundaries are introduced considering only the set of the
previous hopping terms within the boundaries of our lattice.
The eigenvalues of the Lieb TB Hamiltonian as a function
of φ are shown in Fig. 1(b), which includes a zoomed-in
energy-crossing point, Fig. 1(c) (see also Refs. [1,16,20]). A
double Hofstadter butterfly arises in intervals of 2π .

The introduction of magnetic flux opens gaps between the
bands, and two states |ε+〉 and |ε−〉 (whose energies obey
the relation ε+ = −ε−) leave the flat band [see Fig. 1(c)].
These two states arise (up to zeroth order on the flux) from
a combination of the two states in the zero-flux Dirac point,
one dispersive and one localized. In states |ε+〉 and |ε−〉, the
electron has equal probability of being at sublattices A or B/C.
All A sites have the same probability of occupation, but for
the B/C sites the probability increases quasiexponentially as
we move away from the center. This means that the overlap
between a localized state and the |ε±〉 states is stronger the
closer the localized state is to the edge of the lattice. In these
two states, the phase difference between nearest-neighbor sites
is π/2 as we move clockwise in one of the ε states and
anticlockwise in the other. This can be interpreted as the two
states having opposite angular momenta which, when coupled
to the applied magnetic field, confers them symmetric energies
at the energy crossing instants.

The zero-energy crossing at zero flux (or more generally,
at multiples of the flux quantum) is rather particular. At zero
flux and assuming Nx = Ny , the Lieb lattice shares the C4v

symmetry of the square lattice and therefore, one expects
a zero-flux energy spectrum with nondegenerate (double
degenerate) states which are even (odd) under the C2 rotation.
However, the zero-energy crossing involves the |ε±〉 states
which, when (x0,y0) = (0,0), are even under the C2 symmetry.
The introduction of flux lowers the symmetry of the lattice (or
better, of the respective tight-binding Hamiltonian), from C4v

to C4, if we consider a vector potential which has C4 symmetry
[as in the case (x0,y0) = (0,0)], or to a lower symmetry
otherwise.

Let us now consider a time-dependent magnetic flux. The
time evolution of a localized eigenstate |ψ(0)〉 of the Lieb
lattice is given by the time-dependent Schrödinger equation
i d

dt
|ψ〉 = H |ψ〉, so that |ψ(t + dt)〉 = e−iH (t)dt |ψ(t)〉. We

considered, as initial state, a localized eigenstate of the
Hamiltonian of the Lieb lattice at a certain magnetic flux,
and numerically studied its evolution due to a time-dependent
Hamiltonian H (t) representing the slow linear change of the
magnetic flux φ(t) = ωt , where ω is the angular frequency of
the Peierls phase. One should again note that a slowly changing
time-dependent vector potential implies a very small electric
field [21].

Starting with the localized state of the Lieb lattice in
Fig. 1(a), placed at the center of a Lieb lattice with 2 × 2
plaquettes, with φ(t0) = π , the projection of |ψ(t)〉 onto
the localized subspace of H (t) is shown in Fig. 1(d).
This projection is given by P (t) = ∑

i〈0i |ψ(t)〉2, where the
summation is over all localized eigenstates |0i〉 of H . We
remark that, in order to evaluate the itinerant or localized
component of a state in the Lieb lattice, one simply needs
to look at the probability density at sites A. This happens
because in the case of an itinerant state, there is a 50%

probability of finding the electron on sublattice A. Therefore,
both experimentally and theoretically, the projection onto
the localized subspace P is simply 1 − 2PA, where PA is
the probability of finding an electron on sublattice A. The
fast oscillations with modulated amplitude and a larger-scale
staircase behavior, seen in Fig. 1(d), are also observed in larger
lattices. Note that the sum of the state projections onto the
localized basis is a particular state |0̃〉 of the subspace of
localized states |0̃〉 = ∑

i〈0i |ψ(t)〉|0i〉.
The fact that the localized component exhibits a staircase

behavior is a consequence of |ψ(t)〉 acquiring or losing a
dispersive component in the two ε states [see Fig. 1(c)]
whenever the ε± energies cross the flat band (which occurs
periodically at φ = 2πn), in accordance with the adiabatic
theorem. This pattern can be successfully reproduced using
a three-level toy model, as we show in the next section. We
can justify this pattern by analyzing the equation of evolution
of |ψ(t)〉 in the time-dependent eigenbasis {|εi(t)〉} of the
Hamiltonian, where we can write |ψ(t)〉 = ∑

i αi(t)|εi(t)〉.
This leads to the equation

d
/dt = (−iHd + D)
, (2)

where 
(t) = {αi(t)} is the column vector of the components
of |ψ(t)〉 in the eigenbasis {|εi(t)〉}. In the equation above, Hd

is the diagonalized Hamiltonian matrix and Dij ≡ d〈εi |
dt

|εj 〉 =
dφ

dt

d〈εi |
dφ

|εj 〉, where φ is the magnetic flux that will be varied
quasiadiabatically over time. This implies dφ/dt is small
enough that the energy differences between states i and j,�εij ,
are (mostly) much greater than the elements that couple those
states Dij , so that the matrix D can be considered a perturbation
of the system. In this case, the evolution is mostly determined
by the diagonalized Hamiltonian, resulting in constant |αi | of
the evolving state. However, if �εij is zero at some instant
t1, the element Dij will dominate the evolution on a finite
interval around t1 for any (finite) choice of dφ/dt , resulting in
a permanent exchange of component weight between states i

and j .

III. THREE-LEVEL TOY MODEL

In this section we show that the fast oscillations with
modulated amplitude and the larger-scale staircase behavior
of the localized component described in the previous section
can be understood considering a simple three-level system. The
three-level toy Hamiltonian, before basis rotation, comprises
one zero-energy eigenstate and two finite-energy ones [22],
and its matrix representation at time t can be

H̃3 =
⎛
⎝0 0 0

0 0 ε(t)
0 ε(t) 0

⎞
⎠, (3)

with eigenvalues 0 and ε± = ±ε(t), where ε(t) = ε0 sin(ω1t).
The eigenvalues are therefore distinct for all times except
ω1t = nπ , with n ∈ Z [see Fig. 2(a)], an effective simplifi-
cation of the zero-energy crossing instants which occur in the
case of the Lieb lattice [see Fig. 1(c)].
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FIG. 2. (a) Energy spectrum of the three-level toy Hamiltonian H3 as a function of φ = ω1t . The spectrum includes three energy bands,
with energies 0 and ε± = ± sin(ω1t). (b) Illustration of the solution |ψ(t)〉 of the Schrödinger equation describing our three-level toy model
as a classical mechanics precessing position vector r(t) = |ψ(t)〉. The vectors here have the same meaning as in Eq. (4). The trajectory
described by the vector r(t) is the curly orange line and results from solving Eq. (4), with ω1 = ω2 = 2π/1000, and initial condition
r(ω1t = π/10) = (cos(π/10), sin(π/10),0), i.e., a purely localized state. Note that the direction of precession changes whenever the sign of
ε(t) changes. (c) Projection of the evolving state |ψ(t)〉 onto the zero-energy state of the toy Hamiltonian H3 as a function of φ. The parameters
considered are the same as in (b).

Additionally, a rotation of the eigenbasis of the toy
Hamiltonian should be considered. We choose a simple case
of a unitary transformation, the rotation matrix U about the
z axis, with angular velocity ω2, so that the zero-energy state
mixes with the other two states. The full toy Hamiltonian
is H3 = UH̃3U

†. The zero-energy state of H3 at time t

is |0(t)〉 = (cos(ω2t), sin(ω2t),0), and the (not normalized)
eigenstates with energies ε± are (sin(ω2t),cos(ω2t),±1). Other
rotations could be considered by substituting ω2t with the
appropriate time-dependent functions. We comment on the
case of a general unitary operator U (with complex matrix
entries) in the next section.

The evolution of a quantum state due to this Hamiltonian
can then be studied by solving the time-dependent Schrödinger
equation H3|ψ(t)〉 = i d

dt
|ψ(t)〉. One can then plot the pro-

jection of the solution vector |ψ(t)〉 = (x(t),y(t),z(t)) onto
the zero-energy state P0(t) = |〈ψ(t)|0(t)〉|2. A numerically
obtained plot of P0(t) is shown in Fig. 2(c), where we
assumed ω1 = ω2 for simplicity. The energy of the evolving
state 〈ψ(ε)|H3|ψ(ε)〉 was found to remain zero (lower than
10−16 in our numerical calculations) at all times during the
evolution.

The solution of this system can actually be visualized
in 3D, as a position vector. First, since x(t) and y(t) have
zero imaginary part, and z(t) has zero real part, we make
all three components purely real, by replacing z with iz and
consider the position vector r(t) = (x(t),y(t),z(t)). That turns
the Hamiltonian into a skew-symmetric matrix, which can
be identified as the matrix multiplication form of a vector
cross product. Finally, the Schrödinger equation H3|ψ(t)〉 =
i� d

dt
|ψ(t)〉 becomes a classical mechanics precession equation

ṙ(t) = �(t) × r(t), (4)

with �(t) = ε0 sin(ω1t)
�

[cos(ω2t), sin(ω2t),0]. This is the equa-
tion of motion that describes the precession of a vector r(t)

around the vector �(t), which in turn rotates about the z axis
[Fig. 2(b)]. Thus, in this classical perspective, ω1 is responsible
for the change of the length of �(t) over time and ω2 gives the
rotation of �(t) around the z axis.

Because the velocity ṙ(t) is orthogonal to r(t) at all
times, the norm of r(t) is kept constant. The vector �(t) is
the zero-energy eigenstate of the Hamiltonian, multiplied by
ε0 sin(ω1t)/�. The zero-energy component of r(t) is therefore
proportional to the cosine of the angle between r(t) and �(t).
At the energy intersection points (ω1t = nπ ), the velocity
goes to zero and r(t) moves more slowly. However, at these
points, �(t) continues to rotate at the same angular velocity
so that, naturally, the angle between the two vectors changes
considerably, inducing the sudden increases or decreases in the
localized component that can be seen in Fig. 2(c). Away from
the intersection points, P0(t) displays rapid oscillations which
reflect the precession of r around �, as well as the rotation
of �.

In the rotating frame of reference that follows the zero-
energy eigenstate, the precession vector acquires a component
in the z direction � = [ε0 sin(ω1t)/�,0,−ω2]. The instanta-
neous frequency of the rapid oscillations of P0(t) observed
in Fig. 2(c) equals the norm of the precession vector in the

rotating frame � =
√

[ε0 sin(ω1t)/�]2 + ω2
2 (however, if ω2 is

zero, no oscillations will be observed). Indeed, a WKB-like
approach can be used to find an approximate solution of the
three-level model in the regime |ε(t)/�| � |ω2| ⇒ �(t) ≈
ε(t)/�. The approximate solution for the localized projection
〈ψ(t)|0(t)〉 between two consecutive zero-energy crossing
instants is

c
ε0

�
sin(ω1t) +

√
1 − c2

ω2

�
cos

(
− ε0

ω1
cos(ω1t) + θ0

)
, (5)
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where −1 < c < 1 and θ0 are initial condition parameters. This
is still a valid equation even if we used a more general rotation
of the eigenstates, i.e., if the z component of the rotating frame
precession vector −ω2 was substituted by any time-dependent
function. This means that the amplitude of the high frequency
oscillation of |〈ψ(t)|0(t)〉|2 will be approximately given by
|ω2/�|2.

IV. ELECTRIC FIELD SYMMETRY

In the previous section we showed that a simple three-
level system can reproduce the basic features of an evolving
localized state in the Lieb lattice, namely the fast oscillations
with modulated amplitude of the localized component and the
larger-scale staircase behavior. The precession of r(t) in the
case of the toy model implies that the oscillations observed
in the case of the Lieb lattice can be qualitatively interpreted
as a precession of the evolving state around a state which
is approximately the state |0̃〉 defined in Sec. II, but also has
small |ε±〉 components (and even smaller components on other
itinerant states). Furthermore, the nodes and antinodes in the
amplitude of the oscillations at each step of the staircase (this
effect is more explicit for larger lattices) observed in Fig. 1(d)
can also be reproduced by the toy model by tweaking ω2, as it
modulates the amplitude of the oscillations. This implies that,
if in a certain instant ω2 is zero, then a node will be observed
in the amplitude of the oscillations [see Eq. (5)].

In the case of the Lieb lattice, and in analogy with the
three-level system, a rotation between the |ε±〉 states and the lo-
calized states occurs as time evolves. Since this rotation occurs
as the magnetic flux is increased, one expects the rotation to be
proportional to the time derivative of the Hamiltonian. Since
the time dependence of the Hamiltonian is present only in the
vector potential, the rotation reflects the existence of an electric
field. But does any electric field generate such a rotation? Or
equivalently, is it possible to define a time-dependent vector
potential such that the corresponding electric field does not
cause the steplike behavior of the localized component of the
evolving state? The answer lies in the relative symmetry of the
lattice and the vector potential. As mentioned above, a slowly
changing time-dependent vector potential implies a very small
electric field, given by E = −∂A/∂t . In this work, we used
the symmetric gauge A = B(t)

2 (y0 − y,x − x0,0) with a linear
time dependence of the magnetic field B(t) = ωtφ0/(4π ). The
specific case where (x0,y0) = (0,0), meaning the center of the
gauge is the same as that of the lattice, leads to an electric field
such that the steplike behavior vanishes. In this case, both
the system and the electric field possess rotation invariance at
the center of the lattice and therefore, eigenstates of H have
odd or even parity in relation to the center of the lattice. In
particular, one can choose a Hamiltonian eigenbasis for the
localized states {|0i(t)〉}, such that all states have a defined
parity.

In a time-dependent evolution, the transition rate be-
tween eigenstates |ε+(t)〉 and |0i(t)〉 is given by D+0i

(t) =
〈 dε+

dt
|0i(t)〉, if ε+ 	= 0. Using the C4 symmetries of both states,

one can show that the transition rate at the crossing points
φ = 2πn is proportional to the amplitude of the uniform

component of the electric field D+0i
(φ = 2πn) ∝ ω

√
x2

0 + y2
0

(see Ref. [23] for more details). As stated by the adiabatic
theorem, a slow time evolution may only leave the adiabatic
regime if an energy difference of zero is met. However, as
discussed in the analysis of Eq. (2), the adiabatic regime is
abandoned when the matrix elements of D are sufficiently
larger than the energy differences between the respective
states. Since D+0i

= 0 exactly at the same time as the energy
difference is zero, there is not a finite time interval around the
crossing instants where D+0i

� �E+0i
, so that adiabaticity

is not lost even though the energy levels meet, causing the
absence of the staircase behavior when the electric field shares
its center with the lattice.

V. CONCLUSION

In conclusion, we have studied the slow time evolution of
localized states of the Lieb lattice with increasing magnetic
flux. A curious step pattern of the localized component has
been found and we have shown that this behavior can be inter-
preted as a precession movement of the evolving state around
a time-dependent vector with a large localized component and
a much smaller dispersive component. The small dispersive
component changes sharply at the energy-crossing points and
corresponds mainly to two eigenstates of the Hamiltonian
whose energy periodically crosses the zero-energy line. We
have shown that this behavior can be understood considering a
simple three-level toy model consisting of a Hamiltonian with
three time-dependent eigenstates, such that one of them has
constant zero energy and the other two periodically cross the
zero-energy line.

This behavior should also occur due to perturbations that,
similarly to the magnetic and electric fields, lift the C4v

symmetry of the Lieb lattice. We also expect that other
flat-band systems display the same features. For example,
similar behavior is found in the AB2 chain [13], which is
bipartite and also has a flat band which is robust against the
application of a magnetic field.

Concerning the experimental observation of the physics
described in this paper, the step pattern may be observed
in Lieb optical lattices under time-dependent perturbations
or in Lieb photonic lattices, using a spatial modulation of
the properties of the waveguide [24] to replicate the time-
dependent magnetic field [25,26]. By measuring the light
intensity at an A-type waveguide over its length, we can
approximately measure the itinerant component over time.
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