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Infinite coherence time of edge spins in finite-length chains
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Motivated by the recent observation that exponentially long coherence times can be achieved for edge spins in
models with strong zero modes, we study the impact of level crossings in finite-length spin chains on the dynamics
of the edge spins. Focusing on the XY spin-1/2 chain with a transverse or longitudinal magnetic field, two models
relevant to understanding recent experimental results on cobalt adatoms, we show that the edge spins can remain
coherent for an infinite time even for a finite-length chain if the magnetic field is tuned to a value at which there is
a level crossing. Furthermore, we show that the edge spins remain coherent for any initial state for the integrable
case of a transverse field because all states have level crossings at the same value of the field, while the coherence
time is increasingly large for lower temperatures in the case of a longitudinal field, which is nonintegrable.
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In recent experiments on chains of cobalt adatoms [1], level
crossings of the two lowest-energy states have been observed
as a function of the external magnetic field �. An analysis
of the effective spin model of that system, the spin-1/2 XY

chain with an in-plane magnetic field, has revealed the presence
of N level crossings as a function of the magnetic field �

between the two lowest-energy states [2,3]. In Ref. [3], it
was shown in particular that the model can be approximately
mapped through a self-consistent mean-field method to a
well-known fermionic noninteracting model, the Kitaev chain
[4], which can in turn be described as a system of Majorana
fermions coupled in pairs. This model has a topologically
nontrivial phase when the chemical potential lies inside the
free-fermion band. In this phase, two Majorana fermions
located at opposite edges have an exponentially small coupling.
For N values of the magnetic field (inside the topological
phase), this coupling vanishes. The two edge Majoranas can
then be combined to form a zero-energy regular fermion,
implying that all many-particle states are degenerate. This
explains in particular the ground-state crossings in the spin
model [3]. In topological superconducting systems, uncoupled
edge Majoranas are commonly referred to as Majorana zero
modes [5]. After a Jordan-Wigner transformation the Kitaev
chain becomes the XY chain with a transverse field. This model
has been extensively studied and its spin correlation functions
[6–9] and free energy [10] were calculated a long time ago, but
the fact that there are zero modes at nonzero values of the field
has only been noted recently. In the spin model the topological
phase translates exactly to an ordered phase which is either
ferro or antiferromagnetic depending on the spin couplings.
This phase is realized at small transverse fields, below the Ising
quantum critical point.

In another recent work [11], it was shown that “strong zero
modes” associated with an ordered phase of integrable models
such as the transverse-field Ising (TFI) model [12] or the
anisotropic Heisenberg XYZ model lead to a high coherence of
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the edge spin for long times, even for infinite temperature. The
strong zero modes are operators localized at the edges of the
chain that guarantee a quasidegeneracy of all eigenstates, with
a splitting that becomes exponentially small upon increasing
the system size, leading to an infinite coherence time in the
thermodynamic limit. A strong zero mode is still a Majorana
zero mode in the sense of Ref. [5], but the definition of a strong
zero mode stresses the existence of a Z2 symmetry which
anticommutes with the mode operator. The strong zero mode of
the TFI model is exactly the Majorana edge quasiparticle that is
decoupled from the Hamiltonian in the thermodynamic limit.
When considering a perturbation that breaks the integrability of
the TFI model, a strong zero mode could no longer be obtained,
but applying the iterative method used to obtain the XYZ

strong zero mode to this model resulted in an “almost strong
zero mode,” whose existence implies a plateau of coherence for
long albeit always finite times that was observed numerically
[11]. One of the perturbation terms considered was precisely
a spin-spin coupling along the field, resulting in the XY chain
with an in-plane magnetic field.

In this paper, we concentrate on the topological phase of the
model, and we explore the following idea: since degeneracies
due to strong zero modes lead to a high coherence of edge spins
that is maintained forever in the thermodynamic limit because
the degeneracies become exact in that limit, then we can expect
to get the same result if there are exact degeneracies for finite
sizes, like in the XY model with an in-plane or transverse field.

This paper is organized as follows. In Sec. I, we introduce
the two models we focus on, we review the exact solution
of the noninteracting model and the relevant edge operators
of both models, and we investigate the evolution of the level
crossings as we interpolate from one model to the other. In
Sec. II, we show how the edge-spin time correlation can be
approximated by a single exponential (or cosine) in the ordered
phase for any eigenstate, and we explore the consequences of
the degeneracies for both models. We point out that the zero
modes only have significant consequences for the edge spin,
and we illustrate the difference numerically by comparing the
correlation of edge and bulk spins. We also compare the spin
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time correlation of the two models for infinite temperature,
where significant differences show up because the models
differ by an interaction term in the fermionic language that
destroys integrability.

I. MODELS

Let us start by introducing the anisotropic spin-1/2 Heisen-
berg chain with open boundary conditions and a magnetic field
� along z:

H =
N−1∑
i=1

(
Jxσ

x
i σ x

i+1 + Jyσ
y

i σ
y

i+1 + Jzσ
z
i σ z

i+1

) + �

N∑
i=1

σ z
i ,

(1)

where σa (a = x,y,z) are the Pauli matrices. We denote
this model as XYZ-Z, with the convention that the letters
before the hyphen indicate the nonzero components of the J

couplings, while the letter after the hyphen (if any) refers to the
direction of the magnetic field if there is one. In what follows,
we mostly focus on two limits of this model: XZ-Z and
XY -Z, which are equivalent to an XY chain with an in-plane
or out-of-plane magnetic field. Fixing the field direction and
changing the couplings will prove to be more convenient when
comparing the crossings of both models.

All the terms of the Hamiltonian either flip two adjacent
spins or none when applied to a state with spins quantized
along z, implying that there are no couplings between states of
different z spin-parity. This can be quantified by the operator
P = ∏N

i=1 σ z
i with eigenvalues ±1 and [H,P ] = 0. Both

models, XY -Z and XZ-Z, have an ordered phase in which
the ground state is twofold degenerate in the thermodynamic
limit. For XY -Z, this phase is defined by |�| � |Jx + Jy |. For
XZ-Z, |�| � |Jx + Jz| is a good approximation for large Jz,
while |�| � |Jx + 3

2Jz| is more accurate for small Jz [13]. For
finite sizes, there is an energy splitting between the two lowest-
energy states, which belong to different P parity sectors. This
splitting is exponentially small with the size of the system.

A. XY -Z Majorana edge fermions

We review here the exact solution of XY -Z. After a
Jordan-Wigner transformation into Majorana fermions and a
subsequent orthogonal transformation [3,4],

γ a
i = σa

i

i−1∏
j=1

σ z
j , σ z

i = iγ x
i γ

y

i , γ̃ a
i =

∑
j

Qa
ij γ

a
j , (2)

where Qa (a = x,y) are orthogonal matrices, and γ a and
γ̃ a obey {γ a

i ,γ b
j } = 2δabδij , γ a

i = (γ a
i )†, and (γ a

i )2 = 1, the
XY -Z model becomes a model of Majorana fermions coupled
in pairs or, equivalently, a system of free fermions with particle-
hole symmetry:

H = i

2

N∑
i=1

εi γ̃
x
i γ̃

y

i = 1

2

N∑
i=1

εi(μ
†
i μi − μiμ

†
i ), (3)

where μ
†
i = (γ̃ x

i − iγ̃
y

i )/2 obeys the usual fermionic commu-
tation relations. An ε spectrum for a finite system is illustrated
in Fig. 1. We observe in particular that there are ε = 0 solutions

FIG. 1. Spectrum of the quasiparticle excitations ε of XY -Z, for
Jx = 0.6, Jy = 0.4, and N = 8. The model is topologically nontrivial
when |�| � |Jx + Jy | = 1. Four ε = 0 points are observable inside
this phase and there are four more at negative �, symmetric to those
shown here.

at the fields

�n = 2
√

JxJy cos

(
nπ

N + 1

)
, (4)

with n = 1,2, . . . ,N . Note that these points only exist if
JxJy > 0. The Majorana operators γ̃ a

i corresponding to ε ≈ 0,
which we denote as γ̃ a with energy ε0, are

γ̃ a ≈ N
λa+ − λa−

N∑
n=1

[(λa
+)n − (λa

−
)n

]γ a
n , (5)

λa
± = −� ± √

�2 − 4JxJy

2Ja

, (6)

with a = x and y. They are exact when the energy is exactly
zero, so at the points given by Eq. (4). The operators γ̃ x and
γ̃ y are localized at the edges of the system, and one is the
reflection of the other with respect to the middle of the chain.
When |Jx | > |Jy | (respectively |Jy | > |Jx |), γ̃ x (respectively
γ̃ y) is localized at the first site. While we have two uncoupled
Majorana fermions at the �n points, that only means we have
one zero energy fermion, resulting in the twofold degeneracy of
all eigenstates. The Majorana edge fermions of the Ising chain
(X) and the TFI model (X-Z) can be obtained from Eq. (5)
using appropriate limits.

In the fermionic language the ordered phase corresponds to
a topologically nontrivial phase where the γ̃ a are uncoupled in
the thermodynamic limit. Equation (4) guarantees this in the
region �2 < 4JxJy , but the full-ordered phase goes beyond
that. γ̃ x is a solution in the thermodynamic limit as long as
(γ̃ x)2 = 1 for some N . Using this condition to calculate N 2

for N → ∞ we obtain

N 2 = (Jx − Jy)(−� + Jx + Jy)(� + Jx + Jy)

J 2
x (Jx + Jy)

(7)

= 1 −
(

�

Jx

)2

−
(

Jy

Jx

)2

+ O

(
1

J 3
x

)
. (8)

The critical lines of the x-ordered phase can be deduced
from the condition N 2 =0. They are given by |�|=|Jx +Jy |,
corresponding to the order-disorder (topological-trivial) tran-
sition, and Jx = Jy , the transition into the gapless XY phase.
Beyond this line (Jx < Jy) the norm of γ̃ x diverges and the
well-defined edge Majorana is γ̃ y . The phase diagram was
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first obtained from the spin-spin correlations in Ref. [7]. For a
recent review of the model see Ref. [14].

Denoting by |E〉 an eigenstate of energy E, we have

γ̃ x |E〉 = (μ† + μ) |E〉 = |E′〉 , |E〉 = γ̃ x |E′〉 , (9)

where |E′〉 is the eigenstate of energy E′ = E ± ε0, differing
from |E〉 by a quasiparticle. Each term of γ̃ x flips one spin
when the quantization axis is along z, so the P parity is
changed. Separating the eigenstates in parity sectors, we can
write

γ̃ x |E±
n 〉 = |E∓

n 〉 , (10)

where |E±
n 〉 is an eigenstate with P |E±

n 〉 = ± |E±
n 〉.

B. X Z-Z prethermal strong zero mode

The Jz term of XZ-Z becomes a four-fermion term after the
Jordan-Wigner transformation in Eq. (2), so we no longer have
a free fermion solution. In fact, the model is nonintegrable, an
important piece of information since integrability is believed
to be a condition for the existence of a strong zero mode
[15]. A strong zero mode (	) is an operator that squares to 1,
obeys [H,	] ∼ e−|α|N , and changes the P parity of a state of
well-defined parity. For the XY -Z model, the operator γ̃ x with
N → ∞ matches exactly this definition. In the thermodynamic
limit, a strong zero mode commutes with the Hamiltonian but
changes the parity of the state. So each level must contain a
state of each symmetry, and the spectra of both sectors are
identical. This is the case of XYZ, which has a strong zero
mode inside the ordered phase [15].

The XZ-Z model does not have a strong zero mode, but
it has an almost strong zero mode [11], later understood as a
“prethermal strong zero mode” [16], implying the emergence
of a conserved quantity for a quasiexponential time [17,18].
Such an operator, which we denote as �, has the same
properties as a strong zero mode except that the commutator is
always finite: [H,�] = ν, where ν is an operator whose norm
decreases exponentially with the size up to some limiting sys-
tem size where a minimum is reached. Using this commutator
we have

(H� − ν) |E±
n 〉 = E±

n � |E±
n 〉 (11)

for an eigenstate |E±
n 〉. Assuming that the norm of ν is

sufficiently small, we may write

� |E±
n 〉 ≈ |E∓

n 〉 , (12)

with E±
n − E∓

n ∼ ‖ν‖. In the limit Jz = 0, � would become
the X-Z edge Majorana fermion γ̃ x and we would recover
Eq. (10). The operators � and γ̃ x have an important similarity
in that their leading operators are the same:

γ̃ x = Nσx
1 + · · · , � = Mσx

1 + · · · , (13)

M2 = 1 −
(

�

Jx

)2

−
(

Jz

Jx

)2

+ O

(
1

J 3
x

)
. (14)

The second-order expansions of their normalization constants
N and M are also identical. In the limit of the Ising model
(Jy = Jz = � = 0) both operators become equal to σx

1 = γ x
1 ,

which is exactly the uncoupled edge Majorana fermion of that

model. As we will see, the existence of the operators γ̃ x and
� together with the level crossings are the factors that allow a
high coherence of the edge spins for an infinite time for both
models.

C. Level crossings

The addition of a J coupling to X-Z, be it Jy or Jz, creates
oscillations in the energies as a function of � inside the ordered
phase, which causes crossings between pairs of quasidegen-
erate states of different parity, a behavior not present in the
TFI model. In particular, both models have N points of exact
ground-state degeneracy as a function of � in some parameter
region. The ground-state crossings of XZ-Z have already been
studied in detail [3]: when |Jx | > |Jz|, the two lowest-energy
states form a low-energy sector isolated from the rest, and if
Jz > 0, there are N crossings between these two states, while
there are no crossings for Jz < 0. However, the spectrum of
Hz is independent of the sign of Jx and �, so the spectrum of
−H (Jz) is the same as H (−Jz), implying that for Jz < 0 the
crossings are present in the highest-energy state.

Depending on whichJ coupling is the largest and on its sign,
we have different ordered phases. We study the phase |Jx | >

|Jy,z| where there is order in x. The signs of the couplings are
not very important for the correlation, but we want crossings to
exist in the ground state. So, from now on we restrict ourselves
to Jx > Jy,z > 0. Also, the physical situations of positive- or
negative-field � are equivalent by rotation, so we only discuss
� > 0.

In Fig. 2 we show how the crossings in each model are
adiabatically related to each other: starting from the XY -Z
model [Fig. 2(a)], where the noninteracting nature is noticeable
and where all energies are degenerate at �n, and adding
a coupling in the z direction that obeys Jx > Jz > 0, the
ground-state crossings continuously move towards higher �.
Then when decreasing Jy → 0 they become the N crossings of
XZ-Z [Fig. 2(e)]. The middle spectrum [Fig. 2(c)] corresponds
toJy = Jz, which is a turning point where some of the crossings
disappear if we start from XY -Z and increase Jz. In particular,
both crossings of the highest-energy pair meet at � = 0, after
which a gap appears between these states. When Jy finally
becomes zero, a second set of crossings vanishes. The energy
pairing in XZ-Z is highly asymmetrical: lower-energy pairs
have a small gap up to fields much higher than their high-energy
counterparts. Note that the roles would be reversed for negative
Jz. Changing the sign of Jz would invert the spectra in energy,
and the ground state of XZ-Z would have no crossing. The
three middle plots in Fig. 2 show that the XYZ-Z model also
has energy crossings in some parameter region, implying that
some of our results could be extended to the more general case.

II. EDGE-SPIN TIME CORRELATION

This section is devoted to analytical and numerical re-
sults regarding the autocorrelation of edge spins. Following
Ref. [11], we consider the edge-spin time autocorrelation of
an eigenstate |E±

n 〉 of energy E±
n and P parity ±1 defined by

A±
n (t) ≡ 〈E±

n | σx
1 (t)σx

1 (0) |E±
n 〉 , (15)

064424-3



IVO A. MACEIRA AND FRÉDÉRIC MILA PHYSICAL REVIEW B 97, 064424 (2018)

FIG. 2. Spectrum of XYZ-Z for N = 4, Jx = 1, and several values of (Jy,Jz) with XY -Z on the left and XZ-Z on the right. The level
crossings associated to zero modes are highlighted with circles. The noninteracting nature of XY -Z of panel (a) is noticeable: the level crossings
of different pairs of states occur all at the same fields. This is no longer true when the model is not integrable, as in panels (b) to (e).

where the component of the spin is that along which the system
is ordered. We introduce I = ∑

m |E+
m〉 〈E+

m | + |E−
m〉 〈E−

m | to
obtain

A±
n (t) = 〈E±

n | e−iH tσ x
1 eiHt Iσ x

1 |E±
n 〉

=
∑
m

|〈E∓
m |σx

1 |E±
n 〉|2ei(E∓

m−E±
n )t . (16)

In this form it becomes obvious that any degeneracy creates
time-independent positive terms in the correlation, as long as
the appropriate matrix element is nonzero. However, not only
is the matrix element between the states with crossings circled
in Fig. 2 nonzero but also we found that it dominates over
all other matrix elements while inside the bulk of the ordered
phases, implying that we have both degeneracies and a high
value of coherence.

Coherence can still be present when considering higher
temperatures [11]. The limit of lowest coherence should be at
infinite temperature, where the average edge-spin correlation
will be

Ā(t) ≡ 〈
σx

1 (t)σx
1

〉
T =∞ = 1

2N

∑
n

[A+
n (t) + A−

n (t)]. (17)

A. XY -Z correlation

The correlation of XY -Z can be determined exactly since
σx

1 is exactly the local Majorana fermion γ x
1 , which, if we invert

the last equation of Eqs. (2), is given by

σx
1 = γ x

1 =
∑

k

Qx
k1γ̃

x
k , (18)

where we sum over the N Majorana fermions, one of them
being the edge Majorana γ̃ x . Substituting in Eq. (16), we get

A±
n (t) =

∑
m

|〈E∓
m |

∑
k

Qx
k1γ̃

x
k |E±

n 〉|2ei(E∓
m−E±

n )t

=
∑

k

∣∣Qx
k1

∣∣2
eig±

nkεk t , (19)

where g±
nk ≡ −i 〈E±

n | γ̃ x
k γ̃

y

k |E±
n 〉 is equal to −1 or 1 depending

on whether the fermion μ
†
k is present in the state or not. The

correlation of any state consists of the same N terms with

different signs in the exponentials. By symmetry, the result
must be the same at the other edge of the chain. Note that
we cannot write the same decomposition for the correlation of
spins in the bulk since onlyσx

1 corresponds directly to one of the
local Majorana fermions in the Jordan-Wigner transformation.
So we expect a difference between edge and bulk spins.

In the disordered phase, there is no Majorana fermion that
is localized at the edge, so all terms are of the same order of
magnitude but differ in amplitude and frequency. Accordingly,
the system quickly becomes decoherent [Fig. 3(a)]. In the
thermodynamic limit, assuming that all modes have the same
amplitude at the edge spin and considering the ground-state
correlation in which g±

nk = 1 for all k, we have

AGS(t) ≈ 1

εt − εb

∫ εt

εb

eiεt dε = − i

t

eiεt t − eiεbt

εt − εb

, (20)

where εt and εb are the limits of the band, leading to AGS(∞) =
0. We expect the same result for all states. In the ordered phase,
the edge-mode term stands out in amplitude and frequency.
Writing explicitly the γ̃ x term we have

A±
n (t) = N 2eig±

n0ε0t + z(t), (21)

where |z(t)| � (1 − N 2) and z(t) is the bulk contribution to
the correlation, which, as we saw in Eq. (20), disappears for
infinite N and t , so that A±

n (∞) = N 2 in the thermodynamic
limit. For finite sizes, ε0 can be orders of magnitude lower than
the other energies, so the term z(t) looks like noise on the time
scale of 1/ε0 [Fig. 3(b)], even though it is well defined. We can
thus approximate

A±
n (t) ≈ N 2eig±

n0ε0t . (22)

So the edge spin flips after an interval of time τ = π/ε0,
independently of the eigenstate the system is in. Close to the
�n points of Eq. (4), ε0 is approximately linear with ��n =
� − �n, so τ ∼ 1/��n. Since ε0 is exponentially suppressed
with system size, we have τ ∼ e|α|N/��n, allowing for a better
fine-tuning of the coherence time for larger sizes. Exactly at
�n we have A±

n (t) ≈ N 2, so the edge spin remains coherent
for an infinite time [Fig. 3(c)]. Even for infinite temperature,
we have

Ā(t) = Re[A±
n (t)] ≈ N 2 cos(ε0t), (23)
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FIG. 3. (a) and (b) Ground-state edge-spin correlation of XY -Z
for N = 20, Jx = 1, and Jy = 0.3. (a) Disordered phase (� = 2.2).
The correlation function decays very fast. (b) In the ordered phase,
away from a level crossing (� = 0.35). The correlation function
oscillates with period τ = π/ε0, where ε0 is the splitting between
the quasidegenerate ground states. The noiselike component is due
to the bulk. (c) and (d) Average (infinite temperature) edge-spin
correlation for N = 8, Jx = 1, and Jy = 0.3. (c) Close to a level
crossing (�4 ≈ 0.19). At the level crossing, indefinite coherence is
achieved. (d) Close to a level crossing of XY -Z (�4 ≈ 0.19), but
with an extra coupling Jz = 0.001. The coherence is lost after a time
inversely proportional to Jz.

so the same discussion applies in this limit. However, this result
is very sensitive to any realistic perturbation. For example,
adding a very small Jz coupling does not alter significantly
N 2, but each pair of states will have a slightly different energy
difference and the crossings will move away from �n as we saw
in Fig. 2 so that at some point we must reach decoherence, and
an infinitely lived plateau is no longer present at the �n points
[Fig. 3(d)]. However, if we were to change the field slightly to
a value where one of the crossings moved to, then we would
recover a (small) positive constant term in the correlation and
the coherence time would be infinite again. We explore this
fact in more detail in the next section.

B. X Z-Z correlation

We cannot obtain any exact result for the XZ-Z correlation,
but as we saw in Sec. I B there is an operator that gives us a
pairing between states of different parity of the form � |E±

n 〉 ≈
|E∓

n 〉. Using this with the properties of σx
1 , we have

〈E∓
n | �σx

1 |E∓
n 〉 ≈ 〈E±

n | σx
1 |E∓

n 〉 ≈ 〈E±
n | σx

1 � |E±
n 〉

⇒ 〈E±
n | σx

1 |E∓
n 〉 ≈ 1

2 〈E±
n | {σx

1 ,�
} |E±

n 〉 . (24)

If Jz = 0, the expression would have no error term, � would
become γ̃ x , and the anticommutator would be a constant:
{σx

1 ,γ̃ x} = 2N . Using the next-order terms of � determined
in Ref. [11], we find {σx

1 ,�} = 2M + Ô(J 2
z /J 2

x ), and substi-

FIG. 4. (a) and (b) Ground-state edge-spin correlation of XZ-Z
for N = 8, Jx = 1, and Jz = 0.3. (a) In the ordered phase (� =
0.35). (b) Approaching the first ground-state crossing at � ≈ 0.2341.
Although the XZ-Z model is not integrable, the situation is very
similar to that of the XY -Z model [Figs. 3(b) and 3(c)]. (c) and (d)
Average (infinite temperature) edge-spin time correlation at ground-
state crossings, with Jx = 1 and Jz = 0.3: (c) N = 2 and � ≈ 0.62
and (d) N = 4 and � ≈ 0.4. The constant part of the correlation
corresponds to the time average of these curves. It is much smaller
than in the XY -Z case because the crossings do not occur at the same
fields for all pairs, and it decreases fast when the system size increases.

tuting in Eq. (24) we have

〈E±
n | σx

1 |E∓
n 〉 = M + O

(
J 2

z

J 2
x

)
. (25)

In the ordered phase, the correlation can be approximated by
its main term:

A±
n (t) ≈ |〈E∓

n |σx
1 |E±

n 〉|2ei(E∓
n −E±

n )t

≈ M2ei(E∓
n −E±

n )t , (26)

where in the first equation we ignore all other terms and in
the second equation we use Eq. (25). This result is confirmed
numerically, as seen in Fig. 4(a). For finite sizes, we have
A±

n (t) ≈ M2 when the paired states are degenerate, which hap-
pens N times for the ground state [Fig. 4(b)]. The discussion
regarding the XY -Z coherence time close to the degeneracy
points is also applicable here. However, by contrast with
XY -Z, the time-independent term of the average correlation
can be quite small since the crossings of different pairs do not
happen for the same field. At a pair crossing we have

Ā(t) ≈ M2/2N−1 + f (t), (27)

for some real function |f (t)| � 1 − M2/2N−1 whose time
average is approximately zero. The constant term may not
be noticeable due to the noise f (t). The constant term could
be doubled or, although very unlikely, tripled, if for certain
J couplings there are coincident crossings. In Figs. 4(c) and
4(d) we show Ā at the ground-state crossings of very small
chains. The time average in both cases gives approximately
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FIG. 5. Spin time correlation of the first three spins (N = 6) for
the first (AGS) and second (A2) lowest-energy pair of states of XY -Z,
with Jx = 1 and Jy = 0.3, at the first crossing (� ≈ 0.244). High
coherence is maintained away from the edge for the lowest pair
(bottom panels), but it is only maintained at the edge for the second
pair and disappears fast away from it (top panels).

the expected constant term, but it is clear that the constant
term will be harder to detect under the noise as we increase the
chain size.

C. Edge vs bulk

The fact that the main term of the γ̃ x and � operators is
σx

1 has important consequences for the edge spin, but that
is the only term which is a single Pauli matrix, all others
being products of Pauli matrices. So we cannot conclude
anything about the bulk correlation from them. To highlight
the difference between edge and bulk spins, we show in Figs. 5
(XY -Z) and 6 (XZ-Z) the correlation along the spin chain at
a crossing point of the ground state and of a pair of excited
states. While the ground-state correlation is even higher and
consequently has less noise in the bulk, this behavior is mainly

FIG. 6. Spin time correlation of the first three spins (N = 6) for
the first (AGS) and fifth (A5) lowest-energy pair of states of XZ-Z,
with Jx = 1 and Jz = 0.3, at their respective first crossings (�ground ≈
0.295, �excited ≈ 0.376). The situation is the same as for the integrable
XY -Z case of Fig. (5), although the crossings occur at different fields.

lost in the excited states, but some state pairing is still manifest.
For example, on the second spin of the XY -Z chain, the plateau
visible for the first-excited-state (index n = 2) pair implies that
the term | 〈E+

2 | σx
2 |E−

2 〉 |2 ≈ 0.5 dominates over the rest. The
third spin has no plateau, but the σx

3 elements reveal a pairing
in | 〈E±

4 | σx
3 |E∓

2 〉 |2 ≈ 0.9, resulting in a correlation that can
be approximated by 0.9ei(E±

4 −E∓
2 )t .

The fact that the coherence is maintained at all sites in the
ground state is easy to understand in the limit of the slightly
perturbed Ising model (i.e., small Jy and �). In that limit, the
two quasidegenerate ground states are given by

|E±
1 〉 ∼ 1 ± P√

2
|→←→←→←〉x , (28)

where the spins are along thex direction. Calculating the matrix
elements explicitly from here, and noting that {σx

n ,P } = 0,
we have | 〈E+

1 | σx
n |E−

1 〉 |2 ∼ 1, from which the ground-state
coherence of all spins follows. It would be interesting to
see to what extent the observations for the excited states
can be rationalized along similar lines. This goes beyond
the scope of the present paper however and is left for future
investigation.

III. SUMMARY AND DISCUSSION

In both the XY -Z and the XZ-Z models, the edge-spin
time correlation of any eigenstate can be simplified to a
single exponential in the ordered phase due to Majorana-
like operators localized at the edges that commute or almost
commute with the Hamiltonian. At the crossing points of two
paired states the edge-spin state is partially conserved: its time
autocorrelation does not decay to zero but goes to a finite value
(generically smaller than 1) in the limit of infinite time. Close
to the crossing point the edge spin seems to be rotating with
a period that is proportional to 1/��. This could prove of
experimental relevance since the edge spin can be controlled
by an external magnetic field.

While all the spins of the chain show coherence at the
crossings in the ground state, the edge spins are different in
that they are coherent in any excited state. As a consequence,
the coherence remains relatively unaltered for XY -Z at high
temperatures, although the system becomes more sensitive to
perturbations the higher the temperature. For XZ-Z, coherence
can be maintained at a plateau of value M2 for long times
as found in Ref. [11], after which it decays to nM2/2N−1

if there are n degenerate pairs for the current field. Thus for
any temperature there has to be a plateau between M2 and
M2/2N−1.
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